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Summary. Limits on physiological processes, though per- 
haps unknown, must exist. The reported simulations 
evaluate the effect of a physiological limit on the estima- 
tion of genetic parameters and genetic progress. Simula- 
tion experiments reveal no change in the estimate of her- 
itability, even for limits as restrictive as 1.5 phenotypic 
standard deviations above the population mean. How- 
ever, estimates of additive genetic and environmental 
variance shrink as limits on performance increase in 
severity. Simulated physiological limits do not affect the 
rate of genetic progress. However, absolute measures of 
estimated genetic change are less than those predicted by 
response equations. 
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Introduction 

Intuitively, every measure of animal production has a 
limit of performance. Most species of domestic livestock 
have not, however, reached such limits. Nevertheless, 
such limits to performance must exist. Evidence for the 
existence of limits is available in a few, isolated cases. 

A recent estimate of genetic trend in racing perfor- 
mance of thoroughbred horses shows no change in 
record winning times over the past several decades 
(Gaffney and Cunningham 1988). Their results demon- 
strate a significant positive genetic trend, accompanied 
by retention of considerable additive genetic variance. 
Yet record times have failed to show a correlated change. 
Cunningham (1989) suggests that winners of classic 
horse races are close to a physiological limit in perfor- 
mance, and that a mechanism causing this limit is accu- 
mulation of blood lactic acid (Fregin and Thomas 1982). 

Although debate may continue as to whether there is 
such a plausible mechanism, few would question that a 
limit to racing performance exists. Also, one may con- 
tinue to debate the precise level of the limit. However, the 
existence of a limit is axiomatic. 

Racing performance represents a rapid burst of phys- 
iological events. Yet we also assume that limits exist for 
extended physiological processes such lactation or 
growth. Mathematical models of lactation and growth 
rely on Michaelis-Menten kinetics. Such models have 
obvious asymptotic limits (i.e., Vmax). In lactation, most 
models suggest that mammary capacity for the uptake 
and utilization of metabolites is in excess of that ex- 
pressed due to limitations in nutrient availability (Bald- 
win and Smith 1983). Once again, although knowledge of 
a precise limiting process is not available, present data 
suggest that asymptotic values do exist. 

Statistically, a physiological limit represents a point 
beyond which observations have a zero probability of 
occurring. This phenomenon is unlike any other censor- 
ing process considered by animal breeders. Typical cen- 
soring involves the existence of a point beyond which 
observations can occur (with nonzero probability) but 
are not recorded. 

Our purpose here is not to estimate such limits. In- 
stead, we wish to study the impact of limits on estimates 
of future genetic progress. Bearing in mind the Gaffney 
and Cunningham (1988) data, what is the impact of a 
physiological limit on estimates of heritability and ge- 
netic trend? Is there substantial bias in estimates of ge- 
netic variance that will influence the interpretation of the 
data? 

A natural assumption is to expect a decrease in esti- 
mates of variation, both genetic and phenotypic. More- 
over, it is also natural to expect a decrease in estimates of 
genetic trend. However, a preliminary simulation study 
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(L. D.  Van Vleck, pe rsona l  c o m m u n i c a t i o n  1985) showed  

that  p e r f o r m a n c e  l imits above  the m e a n  had  no effect on 

regress ion es t imates  o f  heri tabi l i ty.  Such unan t i c ipa ted  

conclus ions  requi re  an  explana t ion .  Hence ,  the object ive  

o f  this r epor t  is to examine  the impac t  o f  phys io logica l  

l imits on es t imates  o f  genetic  va r iance  and genetic  trend.  

Materials and methods 

The goal of these simulation experiments is to examine the joint 
impact of selection and physiological limits on estimates of ge- 
netic variance and genetic trend. Accordingly, the simulation 
involves two classes of data. The first class involves selection and 
the second serves as a randomly mated control. First, we con- 
sider the structure of the populations under selection. 

Population structure 

We begin with the creation of 200 data sets (replicates) in each 
of three populations (total of 600 data sets). We define a popu- 
lation by the underlying true genetic and environmental vari- 
ances, corresponding to heritabilities of 0.15, 0.25, and 0.35. 
Each data set contains 48 individuals. This is divided into three 
generations of 16 individuals per generation. 

The base generation consists of 16 unrelated individuals 
with breeding values and phenotypes created from pseudo-nor- 
mal random deviates. The phenotypic variance for each popula- 
tion is 100, with a mean of zero. The genetic and environmental 
variances depend on the underlying true heritability. With indi- 
vidual phenotype as the selection criterion, animals with the top 
12 phenotypes are chosen as parents of the next generation. 
Four of the 12 are randomly assigned as males, with the remain- 
ing 8 as females. Each male receives two mates (chosen ran- 
domly) with two progeny created per mating to establish a 
second generation of 16 individuals. The breeding value of each 
offspring is the sum of a randomly generated sampling term 
(with a variance of one-half the additive genetic variance) and 
one-half the breeding value of  each parent. To this breeding 
value a randomly generated environmental term (with mean 
zero and variance established by the underlying true heritability) 
is added to create each phenotype. The third generation of 16 
individuals is created in a similar fashion. 

The allocation of mates in generations one and two is ran- 
dom, except that mating of relatives is not permitted. 

In populations undergoing selection, the choice of parent- 
age is based on the individual's phenotype alone. Of course, in 
the populations not experiencing selection, the 12 parents of 
each generation are chosen strictly at random. Mates are as- 
signed at random, with the exception that mates must not be 
related. 

Simulation of  a physiological limit 

The simplest way to simulate a physiological limit is to censor 
phenotypes above a specific value. Alternative, more complex 
models, would permit a physiological limit to vary from one 
individual to the next. The simulation involves five physiological 
limits. Each of the 200 simulated data sets is subjected to the five 
limits. Measured in phenotypic standard deviations, the limits 
imposed are 1.5 a, 1.75 a, 2.0 or, 2.25 a, and no limit. Because 
a = 10 for all the parameter sets, the actual limits are 15, 17.5, 20, 
and 22.5. 

Once the 16 phenotypes are created within a generation, 
phenotypes above the imposed limit are censored to the value of 
the limit. For example, a phenotype of 16.8, in a population with 
a physiological limit of  15, is changed to 15. Censoring is done 
before the selection of parents and mating. 

Estimates of  variances and genetic trends 

A model for the phenotypes of the 48 individuals is 

Y = Z  a+e (1) 

where Y is the vector of 48 limited phenotypes, Z is a known 
incidence matrix ( Z = / ) ,  a is a random vector of 48 breeding 
values, and e is a vector of random residuals. Moreover, 
E[a] = E[e] = 0 and 

Var I : ]  = [A a~ ? a ~ l  

where A is a matrix of numerator relationships among the 48 
individuals, a~ is the additive genetic variance and a~ is the 
residual variance. Note that a can be partitioned into three 
subvectors, each of order 16, as a' = [a' 11 a'2[ a'3] where the vector 
a i represents the breeding values of individuals of the i th gener- 
ation (i= 1, 2, 3). Breeding values are predicted from the solu- 
tion of 

[Z'Z+ A -  Ik] f t = Z ' Y  (2) 

for k=a~/a  I. 
Estimation of genetic trend is derived from computing the 

mean estimated breeding value of each generation: l'~il/16 for 
the i th generation with 1 a unit vector of order 16. 

The second objective of this experiment was to assess the 
impact of physiological limits on estimates of heritability. Ac- 
cordingly, we estimated a~ and cr~ for each of the 200 simulated 
data sets. The method used was restricted maximum likelihood 
(REML), which involves the following quadratic forms, 

ci 'A- 1 ~i 

and 

~'~ (3) 

for ~ = y  - ZLi. A morel thorough discussion of REML and the 
algorithm used to solve for a ] and cr~ can be found in Henderson 
(1984). For the iterative algorithm, we defined convergence as a 
change of less than 0.001 in both variance components between 
two successive rounds of iteration. The true values of the vari- 
ance components were used as the starting laues in the mixed 
model equations. 

The imposition of a physiological limit to performance has 
one additional expected outcome. As should be clear from 
model (1), genotype and environment are independent. Yet the 
limit to performance should have the indirect effect of creating 
a negative genotype-by-environment covariance. Simply put, 
individuals with a breeding value well above average may have 
phenotypes above the physiological limit. When the data are 
forced to conform to the limit we are, in effect, adding a below- 
average environmental deviation. 

To estimate this covariance term we chose a simple, approx- 
imate strategy; i.e., approximate in that the mixed model equa- 
tions of line (2) do not incorporate a genotype-by-environment 
covariance. As such, estimates of this parameter cannot be made 
under a modified form of the algorithm discussed in Henderson 
(1984). Because this is a simulation, we could compute a second 
set of residuals using the true additive genetic values instead of 
the predicted genetic values. One can then compute the simple 
covariance between the true breeding value and these alterna- 
tively estimated residuals. Although approximate, this statistic 
does provide a simple means to detect the 'creation' of a geno- 
type-by-environment covariance through the imposition of a 
limit to performance. 



Table 1. Mean estimates of genetic and residual variances in populations with physiological limits and no selection 
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Estimates Limit 

True value None 2.25 SD 2.00 SD 1.75 SD 1.50 SD 

True heritability =0.35 
Additive variance 35 35.95 35.56 34.75 33.66 32.05 
Residual variance 65 63.91 63.23 61.77 59.85 56.98 
Total variance 100 99.86 98.79 96.52 93.51 89.03 
Heritability 0.35 0.36 0.36 0.36 0.36 0.36 

True heritability = 0.25 
Additive variance 25 24.15 23.71 23.01 21.98 21.47 
Residual variance 75 76.49 75.07 72.86 69.59 67.99 
Total variance 100 100.64 98.78 95.87 91.57 89.46 
Heritability 0.25 0.24 0.24 0.24 0.24 0.24 

True heritability = 0.15 
Additive variance 15 15.85 15.67 15.34 13.97 13.38 
Residual variance 85 83.21 82.29 80.52 79.19 75.80 
Total variance 100 99.06 97.96 95.86 93.16 89.18 
Heritability 0.15 0.16 0.16 0.16 0.15 0.15 

Table 2. Mean estimates of genetic and residual variances in populations with physiological limits and selection 

Estimates Limit 

True value None 2.25 SD 2.00 SD 1.75 SD 1.50 SD 

True heritability = 0.35 
Additive variance 35 35.85 35.38 33.05 31.70 30.15 
Residual variance 65 63.73 62.90 61.37 58.86 55.98 
Total variance 100 99.58 98.28 94.42 90.56 86.13 
Heritability 0.35 0.36 0.36 0.35 0,35 0.35 

True heritability = 0.25 
Additive variance 25 25.77 24.17 23.21 21.84 20.17 
Residual variance 75 73.36 72.50 69.62 65.52 63.86 
Total variance 100 99.13 96.67 92.82 87.36 84.03 
Heritability 0.25 0.26 0.25 0.25 0.25 0.24 

True heritability = 0.15 
Additive variance 15 15.98 14.55 14.10 13.31 11.72 
Residual variance 85 83.91 82.44 79.87 75.45 71.96 
Total variance 100 99.89 96.99 93.97 88.76 83.68 
Heritability 0.15 0.16 0.15 0.15 0.15 0.14 

Results 

Tables 1 and 2 present means of estimates of the additive 
genetic and residual variances for the three simulation 
parameter sets at each physiological limit. The means in 
Table 1 are from populat ions not experiencing selection. 
Table 2 presents similar statistics in populations under- 
going selection on the simulated, and limited, trait. 

A simple two-way analysis of variance (data not  pre- 
sented) reveals significant differences between data sets 
and limits for each of the variance components  for all 
three parameter sets. However, estimates of heritability 
are not  significantly different across limit classes for all 

three simulation parameter sets. Moreover, the results 
are consistent, regardless of whether or not selection is 

practiced. 
Upon  closer examinat ion of Table 1, we note a grad- 

ual decline in all variance estimates as the limit becomes 
more severe. Such a result is anticipated. Yet the stability 
of the heritability estimate is not  so easily predicted. 

Interestingly, in comparing estimates in Tables 1 and 
2, the decline in variance estimates across limits is greater 
in populations experiencing selection. The consensus of 
simulation and analytic results suggests that R E M L  esti- 
mates of variance components  are not  biased by specific 
forms of selection when 'tied' to an unselected base pop- 
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Table 3. Mean estimates of breeding value in populations with physiological limits and no selection (including the percentage of 
individuals exceeding the limit) 

Generation Limit 

True value None 2.25 SD 2.00 SD 1.75 SD 1.50 SD 

True heritability = 0.35 
1 0.02 0.03 (0) 0.02 (1.2) 0.00 (2.2) -0.04 (4.3) -0.11 (7.8) 
2 --0.06 --0.07 (0) --0.05 (0.9) 0.03 (2.2) --0.09 (4.0) --0.19 (6.4) 
3 0.04 0.05 (0) 0.04 (1.3) 0.01 (2.3) 0.00 (4.0) --0.09 (6.7) 

True heritability = 0.25 
1 -0.01 0.00 (0) -0.01 (1.3) -0.02 (2.3) 0.06 (3.9) -0.11 (6.8) 
2 0.05 0.05 (0) 0.05 (1.3) 0.02 (2.2) -0.03 (4.3) -0.11 (7.0) 
3 -0.05 -0.06 (0) -0.05 (1.2) -0.08 (2.3) -0.13 (3.8) -0.23 (6.6) 

True heritability = 0.15 
1 0.00 -0.01 (0) -0.02 (1.0) -0.03 (2.0) -0.05 (3.7) -0.09 (6.9) 
2 0.04 0.05 (0) 0.04 (1.2) 0.02 (2.2) -0.01 (3.5) -0.07 (6.3) 
3 -0.03 -0.01 (0) -0.02 (1.0) -0.04 (2.1) -0.08 (4.0) -0.14 (6.2) 

Table 4. Mean estimates of breading value in populations with physiological limits and selection (including the percentage of 
individuals exceeding the limit) 

Generation Limit 

True value None 2.25 SD 2.00 SD 1.75 SD 1.50 SD 

True heritability = 0.35 
1 0.01 0.05 (0) 0.03 (6.8) 0.01 (1.8) -0.04 (3.5) -0.14 (6.1) 
2 1.41 1.44 (0) 1.39 (2.0) 1.35 (3.6) 1.27 (5.9) 1.14 (9.4) 
3 2.81 2.78 (0) 2.73 (1.9) 2.67 (3.9) 2.56 (6.9) 2.39 (10.9) 

True heritability = 0.25 
1 0.00 0.02 (0) -0.01 (1.4) -0.03 (2.5) -0.07 (4.1) -0.14 (7.0) 
2 1.08 1.1 (0) 1.05 (1.6) 1.01 (3.0) 0.94 (5.4) 0.83 (8.8) 
3 2.07 2.11 (0) 2.05 (2.4) 2.00 (4.2) 1.91 (7.1) 1.76 (10.9) 

True heritability = 0.15 
1 0.01 0.02 (0) 0.01 (1.1) 0.00 (2.5) -0.03 (4.1) -0.07 (6.6) 
2 0.66 0.66 (0) 0.64 (1.4) 0.62 (2.5) 0.57 (4.5) 0.50 (7.6) 
3 1.14 1.18 (0) 1.16 (1.4) 1.13 (3.0) 1.07 (4.7) 0.98 (7.6) 

ulation. Gianola et al. (1989) lend support to this argu- 
ment by demonstrating that R E M L  equations taking 
selection into account are identical to those ignoring se- 
lection. This is true, of  course, only if the data are distrib- 
uted normally. In those data sets with imposed limits, an 
assumption of  normality is not  justified. Hence, variance 
estimates in populations undergoing selection are not 
expected to be equivalent to estimates in randomly mated 
populations. The fact that estimates of  heritability re- 
main unaltered, however, is unanticipated. 

As might be expected for populations not undergoing 
selection, estimates ofphenotypic  variance are similar for 
the three parameter sets, because all data are simulated 
with a phenotypic variance of  100, regardless of  underly- 
ing heritability. Although there is a significant decline 

with more severe physiological limits, the decline in phe- 
notypic variance is similar for each parameter set regard- 
less of  heritability. 

Tables 3 and 4 present the means of  estimates of  
breeding values by generation for selected and unselected 
populations, respectively. Breeding value estimates are 
from the first round solutions of  the mixed model equa- 
tions [Eq. (2)]. In populations not undergoing selection, 
genetic change should be nonexistent, as is evident in the 
trend of  the mean true breeding values. This result is 
repeated in the estimates from populations without a 
physiological limit. However, with the imposition of  a 
performance limit, and as that limit becomes more 
severe, the means of  estimates of  breeding value decline. 
The change from one generation to the next, across lim- 



Table 5. Mean estimates of genotype-by-environment covariance in populations with physiological limits and no selection 
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Limit 

None 2.25 SD 2.00 SD 1.75 SD 1.50 SD 

True heritability 0.35 -0.02 -0.27 -0.57 - 1.12 - 1.98 
True heritability 0.25 0.03 -0.27 --0.55 --0.98 - 1.62 
True heritability 0.15 -0.04 -0.16 -0.30 -0.50 -0.81 

Table 6. Mean estimates of genotype-by-environment covariance in populations with physiological limits and selection 

Limit 

None 2.25 SD 2.00 SD 1.75 SD 1.50 SD 

True heritability 0.35 -0.04 -0.44 -0.83 - 1.49 --2.46 
True heritability 0.25 0.03 - 0.45 - 0.81 - 1.34 - 2.14 
True heritability 0.15 0.03 -0.13 -0.30 -0.57 -0.97 

its, is consistent. Only at the most  constraining of  limits 
is the genetic change per generation influenced. Yet even 
these changes are minimal. 

Table 4 presents the means of  estimates of  breeding 
value in populations experiencing selection. The first col- 
umn, representing the change in true breeding values of  
the simulated genotypes, accurately reflects the expected 
change in each population. Using order statistics, the 
mean of  the top 12 of  16 standard normal variables is 
0.40 (Beyer 1966). Accordingly, the expected genetic 
change is 1.40, 1.00, and 0.60 in those populations with 
heritabilities of  0.35, 0.25, and 0.15, respectively. 

As in those populations not undergoing selection, the 
imposition of  a performance limit forces a decrease in the 
estimated breeding values. However, the decline is no 
more severe in populations with selection than those 
without selection. Perhaps the most interesting observa- 
tion is that, al though a physiological limit brings about  
a decline in the mean of  estimated breeding values, the 
differences between generations are unaffected. Thus, the 
expected differences between generations as a result of  
selection (the values of  1.40, 1.00, or 0.60) are observed 
regardless of  the imposed performance limit. As with 
heritabitity estimates, the existence o f  a physiological 
limit does not influence the estimation of  genetic trend. 
Of  course, this conclusion is confined to short-term selec- 
tion response in populations with moderate physiological 
limits. The experiments here do not permit extrapolation 
to more severe limits or measures of  response beyond 
three generations. 

Tables 5 and 6 present mean estimates of  the geno- 
type-by-environment covariance. As outlined earlier, be- 
fore this experiment, imposition of  physiological limits 
would have been expected to create a negative genotype- 

by-environment covariance. As the tables illustrate, this 
is clearly the case. As the limits imposed become more 
restrictive, this covariance moves farther from zero. Of  
course, with no limit, the value of  this covariance is ap- 
proximately zero, whether there is selection or not. How- 
ever, the mean absolute value of  this covariance is greater 
in populations with selection than in those where parents 
are chosen at random. Whether these differences are 
statistically significant has not been tested. 

Discussion 

Intuitively, the existence of  an upper limit to perfor- 
mance would be expected to bias estimates of  genetic 
parameters. Indeed, the results in Tables 1 and 2 show a 
significant decrease in estimates of  genetic, environmen- 
tal, and phenotypic variance (two-way analysis o f  vari- 
ance not presented). Yet the decrease in genetic and envi- 
ronmental  variances is such that the estimate of  
heritability is unchanged. 

We see a similar result in the estimates of  genetic 
trend. The imposition of  a physiological limit, as noted 
above, reduces the range of  phenotypes. As a result, 
predictions of  large breeding value also decline. The ef- 
fect of  this reduction is to decrease the absolute estimates 
of  genetic progress. For  example, in populations with a 
true heritability of  0.25, Table 4 presents the third-gener- 
ation mean breeding value as 1.76 when the imposed 
limit is 1.5 phenotypic standard deviations above the 
mean. Yet the true genetic mean is 2.07. The rate of  
estimated genetic change remains unaffected. The 
changes in mean breeding value across generations are 
consistent with changes in limit. Thus, al though the ab- 
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solute magnitude of genetic change declines, the rate of 
genetic change is unaffected by physiological limits to 
performance. 

No doubt, a critical value in generating these results 
is the number of animals that exceed the limit. Tables 3 
and 4 present the percentage of individuals that were 
beyond the physiological limit and had censored pheno- 
types. Although substantial, these percentages are not 
large enough to distort the distribution of phenotypes. 
Thus, if only a small portion of individuals is affected by 
the limit, the impact on estimation of variances and ge- 
netic trends is less pronounced. 

I f  this model of physiological limits is appropriate, 
the results of Gaffney and Cunningham (1988) for herita- 
bility and rates of genetic change should be unaffected by 
a potential physiological limit to racing performance. Of 
course, estimates of variance components and mean 
breeding values will be reduced by a limit to perfor- 
mance. This enforces the obvious notion that physiolog- 
ical limit does not limit the population mean. The impact 
of the limit is to reduce the performance of individuals at 
the extreme. The mean performance still has the capacity 
for genetic change. The rate of such genetic change is 
little affected by the limiting of extreme phenotypes. 

One explanation for the continuation of genetic pro- 
gress in traits constrained by physiological limits is the 
inability of the limit to change those individuals selected 
as parents. Although predictions of breeding value are 
reduced, the same individuals are chosen as parents, re- 
gardless of the limit. Recall from the design of the exper- 
iment that the same series of pseudo-random normal 
deviates was chosen for each limit class. Hence, the same 
data were simulated (prior to the imposition of a limit) in 
all cases. Note that the same mean of true breeding val- 
ues was computed in each limit class. This is evidence 
that the same 12 individuals were chosen as parents in 
each generation of the 200 data sets. So, within the limits 
imposed, the impact on the actual breeding program was 
negligible over the three generations simulated. 

One outcome of these experiments that has no simple 
explanation is the failure of  REML to behave the same 

on selected data as on unselected data. A comparison of 
means in Tables I and 2 reveals that REML estimates of 
variance components are not only influenced by limits to 
performance, but that this influence is exaggerated by 
selected data. Most likely, this difference in mean esti- 
mates is a function of the number of animals that are 
censored by the physiological limit. More animals are 
censored in populations undergoing selection than in 
randomly mated populations. This fact may be the cause 
of the decline in variance estimates. 

The results presented in Table 1 suggest that REML 
cannot overcome the bias induced by censoring extreme 
phenotypes. Such an outcome is natural to assume from 
the outset of the experiment. Yet from the outset one 
might also assume that selection would not additionally 
bias estimates of variances. That selection, in this setting, 
can bias estimates of variance components via REML is, 
perhaps, the most interesting result of these simulations. 
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